
Poster Abstract: KleeNet — Automatic Bug Hunting in
Sensor Network Applications

Raimondas Sasnauskas, Jó Ágila Bitsch Link,
Muhammad Hamad Alizai, Klaus Wehrle

Distributed Systems Group, RWTH Aachen University, Germany
{lastname}@cs.rwth-aachen.de

ABSTRACT
We present KleeNet, a Klee based bug hunting tool for sen-
sor network applications before deployment. KleeNet auto-
matically tests code for all possible inputs, ensures memory
safety, and integrates well into TinyOS based application
development life cycle, making it easy for developers to test
their applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; D.2.5 [Testing and Debugging]: Test-
ing tools, Symbolic execution

General Terms
Performance, Reliability, Languages

Keywords
Type safety, memory safety, bug finding, TinyOS

1. INTRODUCTION
Currently, sensor network application developers are con-

fronted with a number of domain specific complications. The
constrained memory and CPU resources on sensor nodes re-
sult in using low-level, type-unsafe languages without dy-
namic type checking and memory protection. Similarly, be-
cause the applications are highly data-flow oriented, the cor-
rect exception handling at full coverage is a challenging task.
Moreover, due to highly distributed and faulty nature of sen-
sor nodes, some of the program bugs are detected only after
the software is deployed.

C language has been the main choice for developing sen-
sor network applications. It provides great flexibility, ex-
pressiveness, and in particular, the required low resource
footprint. However, the absence of dynamic type checking
in C necessitates very careful programming because many
sensor OS’s do not support memory protection.

Numerous tools exist for error removal in C programs,
hence, our first step was to employ them for testing sensor
network software written in the widely spread TinyOS plat-
form. We encountered the following problems due to which
the available tools are mostly not used at all, and the devel-
opers fall back on manual code debugging techniques: (1)

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
ACM 978-1-59593-990-6/08/11.

Sensor network applications are tightly integrated into the
operating system leading to time-consuming manual code
modification in order to perform the actual testing; (2) Most
of the tools perform only static code analysis with limited
support for C semantics; (3) None of the tested tools can
offer a push-button bug finding technology and the usage
learning curve is mostly too steep for a typical developer.

2. RELATED WORK
To the best of our knowledge, currently there are no frame-

works for automatic bug detection in sensor network appli-
cations before deployment at bit-accurate C semantics. For
bringing memory safe executions of applications at runtime,
we only know of the related efforts [2,3], where the sole rep-
resentative with fined-grained memory safety at C level is
Safe TinyOS.

Safe TinyOS adds dynamic memory checks during compi-
lation which allows to catch unsafe pointer and array oper-
ations without corrupting the RAM. Overall, this results in
13% increase in the code size and 5.2% increase in CPU us-
age. As with any dynamic assertion checking, Safe TinyOS
can detect program bugs only eventually after the software is
deployed. Therefore, still many corner-case bugs circumvent
this testing technique. KleeNet, on the other hand offers
offline bug detection with automatic code instrumentation.
In doing so, it doesn’t consume any system resources and
ensures memory safety by treating the inputs symbolically
i.e. checks any program variable for its all possible input
values. As the core engine of KleeNet interprets a virtual
instruction set, it cannot detect hardware platform depen-
dent assembly level bugs nor enforce runtime memory safety.
Thus, KleeNet complements the beneficial features of Safe
TinyOS allowing altogether even more rigorous application
testing (see Table 1).

Overall, we make following contributions: First, we in-
tegrate an effective bug finding tool into the event-driven
TinyOS programming model with usability as a primary
goal. Second, we show that, apart from the general checks
already available, Klee can easily be extended to incorpo-
rate further checks useful for testing sensor network appli-
cations. And third, we practically demonstrate that sound
testing techniques can be used throughout the application
development process with minimum manual effort.

3. KLEENET OVERVIEW
Our proposed solution and its prototype implementation

is based on Klee, the second implementation of EXE [1].
Klee is a symbolic execution tool for bug detection in C

Features Safe TOS KleeNet

Automatic code instrumentation − +
Target platform independence − +
Assembly level bug detection + −
Off-line bug detection − +
All possible input values checked − +
Automatic test case generation − +
Runtime safety enforcement + −
No additional resource usage − +

Table 1: Comparison: Safe TinyOS and KleeNet

programs. In contrast to common runtime testing where
the program input is (manually) generated, it runs the code
on symbolic input initially allowed to take any value. If a
bug is detected, Klee automatically generates a test case
with concrete values causing that bug. At the current state
of its implementation, Klee reports memory reference and
division by zero errors.

Automatic code instrumentation. To provide a user-
friendly solution, we use grammar based automatic code in-
strumentation. We extend the ANTLR [4] based GNU C
grammar to automatically insert symbolic annotations (i.e.
to mark the memory locations to be checked by Klee) in
the C source code. The user only needs to provide a high
level configuration stating the variable names that have to
be checked inside the code.

Struct type checking. The received sensor data is ini-
tially available only as a pointer to an untyped bit stream
and is later repeatedly casted to different structure types,
making the code vulnerable to type errors. We have ex-
tended the functionality of Klee to check the struct type
equality during pointer casting operations. This check is
optional, nevertheless, KleeNet warnings are useful and fa-
cilitate program comprehension.

Integration into TinyOS. We have added a virtual
KleeNet platform based on the TinyOS null platform to in-
tegrate Klee into TinyOS. This approach allows to easily
extend our platform by adding modules that automatically
mark inputs from sensors and incoming packets as symbolic.

In order to cover all possible program control flow paths
during testing, we have extended our virtual platform with
an automatic event signaling mechanism. Once an appli-
cation is booted, all implemented events are signaled and
processed.

Figure 1 shows an overview of KleeNet’s build process.
First, a user can optionally specify in a configuration file
which variables should be marked as symbolic. Second, all
incoming packet buffers are also marked symbolic automati-
cally. Finally, Klee compiles and interprets the instrumented
code and terminates when no bug is detected. Otherwise, a
test case with real input values is automatically generated,
causing the deployed sensor network application to follow
the same path and hit the same bug.

We apply code instrumentation at C level, therefore, our
approach can easily be integrated into any other sensor net-
work development platform and operating system.

4. PRELIMINARY EVALUATION
We first checked the BlinkFail application from the TinyOS

source repository used to test the Safe TinyOS toolchain in-
stallation. After marking the array index variable as sym-

!"#$%&'"#%

$%()*"%

+!!),-*"*%

$%$)*"%

./0"(,%&'"%

"12,% ,"#,%(-#"%

!"#$%&'()'&*+#,(

-).+/&'((

&//+$&.+/0(12(%03#(

4+,)"'&.+/(

5%6(73$38$37((93#,"/&.+/(

$ make kleenet

$ make kleenet test

Figure 1: Integration of KleeNet into TinyOS

bolic, we immediately detected the known out of bound
pointer error and a concrete test case leading to it.

Then we checked several applications without annotating
the source code and rapidly detected possible division by
zero errors. They occurred when received network data was
processed without sanitization - a typical mistake made by
novice programmers.

Overall, after our initial tests, we have confirmed the fol-
lowing key benefits of KleeNet:

Usability: A programmer can test the code with min-
imum manual effort and without any previous knowledge
about the checking tool.

Coverage: KleeNet covers all possible execution paths
and checks all possible data values before application de-
ployment.

Integration: KleeNet is invoked by simply adding an ex-
tra build flag enabling the permanent code checking during
the application development process.

Efficiency: It is fast for everyday use.

5. CONCLUSION AND FUTURE WORK
It is essential to fully test sensor network applications,

i.e. taking all possible input values into account, where the
cost of occurring undetected errors after deployment could
be fatal. We have demonstrated that it is possible to close
the gap between the testing and development community
by providing a user-friendly and automatic bug finding tool
which is strongly integrated into the system development life
cycle.

Our work is in progress and incorporating further useful
checks in Klee, such as runtime monitoring of long loops and
computationally intensive tasks by adding time annotations,
is future work. Similarly, verifying the distributed behavior
of sensor network protocols, such as correct state transitions,
remains to be addressed.

6. REFERENCES
[1] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: automatically generating inputs of death. In
CCS ’06: Proc. of 13th ACM conf. on Computer and
communications security, 2006.

[2] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr.
Efficient memory safety for TinyOS. In SenSys ’07: Proc. of
the 5th international conference on Embedded networked
sensor systems, 2007.

[3] R. Kumar, E. Kohler, and M. Srivastava. Harbor:
software-based memory protection for sensor nodes. In IPSN
’07: Proc. of the 6th international conference on
Information processing in sensor networks, 2007.

[4] T. J. Parr and R. W. Quong. Antlr: a predicated-ll(k) parser
generator. Software: Practice and Experience, July 1995.

	Introduction
	Related Work
	KleeNet Overview
	Preliminary Evaluation
	Conclusion and Future Work
	References

